Annals of Cardiac Anaesthesia (Jan 2008)

Treatment of ethanol-induced acute pulmonary hypertension and right ventricular dysfunction in pigs, by sildenafil analogue (UK343-664) or nitroglycerin

  • Sidi Avner,
  • Naik Bhiken,
  • Urdaneta Felipe,
  • Muehlschlegel Jochen,
  • Kirby David,
  • Lobato Emilio

Journal volume & issue
Vol. 11, no. 2
pp. 96 – 103

Abstract

Read online

In patients at risk for sudden ethanol (ETOH) intravascular absorption, prompt treatment of pulmonary hypertension (PHTN) will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664) and nitroglycerin (NTG) during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT), as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP), and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7) normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8), or NTG 1 μg/kg ( n = 8); each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP), and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR). Within 2 minutes after treatment with either drug, CVP, heart rate (HR), and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR) ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241±579 and 1224±494 dyne · cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672±308 and 538±203 dyne · cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from baseline values of PVR, and the partial recovery of systemic pressure and RV contractility compared to the maximal change during target PHTN, were significant only in the sildenafil analogue group.

Keywords