Brain Sciences (Dec 2022)
Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation
Abstract
Proprioceptive deficits are common following stroke, yet the white matter involved in proprioception is poorly understood. Evidence suggests that multiple cortical regions are involved in proprioception, each connected by major white matter tracts, namely: Superior Longitudinal Fasciculus (branches I, II and III), Arcuate Fasciculus and Middle Longitudinal Fasciculus (SLF I, SLF II, SLF III, AF and MdLF respectively). However, direct evidence on the involvement of these tracts in proprioception is lacking. Diffusion imaging was used to investigate the proprioceptive role of the SLF I, SLF II, SLF III, AF and MdLF in 26 participants with stroke, and seven control participants without stroke. Proprioception was assessed using a robotic Arm Position Matching (APM) task, performed in a Kinarm Exoskeleton robotic device. Lesions impacting each tract resulted in worse APM task performance. Lower Fractional Anisotropy (FA) was also associated with poorer APM task performance for the SLF II, III, AF and MdLF. Finally, connectivity data surrounding the cortical regions connected by each tract accurately predicted APM task impairments post-stroke. This study highlights the importance of major cortico–cortical white matter tracts, particularly the SLF III and AF, for accurate proprioception after stroke. It advances our understanding of the white matter tracts responsible for proprioception.
Keywords