Cell & Bioscience (Feb 2023)

TPM2 attenuates progression of prostate cancer by blocking PDLIM7-mediated nuclear translocation of YAP1

  • Zonglong Wu,
  • Liyuan Ge,
  • Lulin Ma,
  • Min Lu,
  • Yimeng Song,
  • Shaohui Deng,
  • Peichen Duan,
  • Tan Du,
  • Yaqian Wu,
  • Zhanyi Zhang,
  • Shudong Zhang

DOI
https://doi.org/10.1186/s13578-023-00993-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Prostate cancer (PCa) is a common malignant tumor of the genitourinary system. Clinical intervention in advanced PCa remains challenging. Tropomyosins 2 (TPM2) are actin-binding proteins and have been found as a biomarker candidate for certain cancers. However, no studies have explored the role of TPM2 in PCa and its regulatory mechanism. Methods TPM2 expression was assessed in Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) PCa patient dataset. The effect of TPM2 on PCa progression was assessed in vitro and in vivo by quantifying proliferation, migration, invasion and tumor growth assays, and the mechanism of TPM2 in PCa progression was gradually revealed by Western blotting, immunoprecipitation, and immunofluorescence staining arrays. Results TPM2 was found to be severely downregulated in tumor tissues of PCa patients compared with tumor-adjacent normal tissues. In vitro experiments revealed that TPM2 overexpression inhibited PCa cell proliferation, invasion and androgen-independent proliferation. Moreover, TPM2 overexpression inhibited the growth of subcutaneous xenograft tumors in vivo. Mechanistically, this effect was noted to be dependent on PDZ-binding motif of TPM2. TPM2 competed with YAP1 for binding to PDLIM7 through the PDZ-binding motif. The binding of TPM2 to PDLIM7 subsequently inhibited the nuclear transport function of PDLIM7 for YAP1. YAP1 sequestered in the cytoplasm phosphorylated at S127, resulting in its inactivation or degradation which in turn inhibited the expression of YAP1 downstream target genes. Conclusions This study investigated the role of TPM2, PDLIM7, and YAP1 in PCa progression and castration resistance. TPM2 attenuates progression of PCa by blocking PDLIM7-mediated nuclear translocation of YAP1. Accordingly, targeting the expression or functional modulation of TPM2, PDLIM7, or YAP1 has the potential to be an effective therapeutic approach to reduce PCa proliferation and prevent the progression of castration-resistant prostate cancer (CRPC).

Keywords