Life (Sep 2024)
Acute Effects of Transcranial Direct Current Stimulation Combined with High-Load Resistance Exercises on Repetitive Vertical Jump Performance and EEG Characteristics in Healthy Men
Abstract
Background: Transcranial direct current stimulation (tDCS) is a non-invasive technique known to enhance athletic performance metrics such as vertical jump and lower limb strength. However, it remains unclear whether combining tDCS with the post-activation effects of high-load resistance training can further improve lower limb performance. Objective: This study investigated the synergistic effects of tDCS and high-load resistance training, using electroencephalography to explore changes in the motor cortex and vertical jump dynamics. Methods: Four experiments were conducted involving 29 participants. Each experiment included tDCS, high-load resistance training, tDCS combined with high-load resistance training, and a control condition. During the tDCS session, participants received 20 min of central stimulation using a Halo Sport 2 headset, while the high-load resistance training session comprised five repetitions of a 90% one-repetition maximum weighted half squat. No intervention was administered in the control group. Electroencephalography tests were conducted before and after each intervention, along with the vertical jump test. Results: The combination of tDCS and high-load resistance training significantly increased jump height (p p p p p p < 0.05). Conclusions: The findings suggest that combining transcranial direct current stimulation (tDCS) and high-load resistance training significantly enhances vertical jump performance compared to either intervention alone. This improvement is associated with changes in the α-wave and β-wave power in specific brain regions, such as the frontal and temporal lobes. Further research is needed to explore the mechanisms and long-term effects of this combined intervention.
Keywords