Nanomaterials (Aug 2024)

In Situ, Nitrogen-Doped Porous Carbon Derived from Mixed Biomass as Ultra-High-Performance Supercapacitor

  • Yuqiao Bai,
  • Qizhao Wang,
  • Jieni Wang,
  • Shuqin Zhang,
  • Chenlin Wei,
  • Leichang Cao,
  • Shicheng Zhang

DOI
https://doi.org/10.3390/nano14161368
Journal volume & issue
Vol. 14, no. 16
p. 1368

Abstract

Read online

How to address the destruction of the porous structure caused by elemental doping in biochar derived from biomass is still challenging. In this work, the in-situ nitrogen-doped porous carbons (ABPCs) were synthesized for supercapacitor electrode applications through pre-carbonization and activation processes using nitrogen-rich pigskin and broccoli. Detailed characterization of ABPCs revealed that the best simple ABPC-4 exhibited a super high specific surface area (3030.2–3147.0 m2 g−1) and plentiful nitrogen (1.35–2.38 wt%) and oxygen content (10.08–15.35 wt%), which provided more active sites and improved the conductivity and electrochemical activity of the material. Remarkably, ABPC-4 showed an outstanding specific capacitance of 473.03 F g−1 at 1 A g−1. After 10,000 cycles, its capacitance retention decreased by only 4.92% at a current density of 10 A g−1 in 6 M KOH. The assembled symmetric supercapacitor ABPC-4//ABPC-4 achieved a power density of 161.85 W kg−1 at the maximum energy density of 17.51 Wh kg−1 and maintained an energy density of 6.71 Wh kg−1 when the power density increased to 3221.13 W kg−1. This study provides a mixed doping approach to achieve multi-element doping, offering a promising way to apply supercapacitors using mixed biomass.

Keywords