PLoS ONE (Jan 2015)

Analysis of pharmacogenomic variants associated with population differentiation.

  • Bora Yeon,
  • Eunyong Ahn,
  • Kyung-Im Kim,
  • In-Wha Kim,
  • Jung Mi Oh,
  • Taesung Park

DOI
https://doi.org/10.1371/journal.pone.0119994
Journal volume & issue
Vol. 10, no. 3
p. e0119994

Abstract

Read online

In the present study, we systematically investigated population differentiation of drug-related (DR) genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively), and "drug binding" was highly enriched (16.51) despite its relatively high q-value (0.0142). Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3) contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is associated with cell communication and drug binding.