In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

The impact of genetic susceptibility to systemic lupus erythematosus on placental malaria in mice.

PLoS ONE. 2013;8(5):e62820 DOI 10.1371/journal.pone.0062820

 

Journal Homepage

Journal Title: PLoS ONE

ISSN: 1932-6203 (Online)

Publisher: Public Library of Science (PLoS)

LCC Subject Category: Medicine | Science

Country of publisher: United States

Language of fulltext: English

Full-text formats available: PDF, HTML, XML

 

AUTHORS


Michael Waisberg

Christina K Lin

Chiung-Yu Huang

Mirna Pena

Marlene Orandle

Silvia Bolland

Susan K Pierce

EDITORIAL INFORMATION

Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks

 

Abstract | Full Text

Severe malaria, including cerebral malaria (CM) and placental malaria (PM), have been recognized to have many of the features of uncontrolled inflammation. We recently showed that in mice genetic susceptibility to the lethal inflammatory autoimmune disease, systemic lupus erythematosus (SLE), conferred resistance to CM. Protection appeared to be mediated by immune mechanisms that allowed SLE-prone mice, prior to the onset of overt SLE symptoms, to better control their inflammatory response to Plasmodium infection. Here we extend these findings to ask does SLE susceptibility have 1) a cost to reproductive fitness and/or 2) an effect on PM in mice? The rates of conception for WT and SLE susceptible (SLE(s)) mice were similar as were the number and viability of fetuses in pregnant WT and SLE(s) mice indicating that SLE susceptibility does not have a reproductive cost. We found that Plasmodium chabaudi AS (Pc) infection disrupted early stages of pregnancy before the placenta was completely formed resulting in massive decidual necrosis 8 days after conception. Pc-infected pregnant SLE(s) mice had significantly more fetuses (∼1.8 fold) but SLE did not significantly affect fetal viability in infected animals. This was despite the fact that Pc-infected pregnant SLE(s) mice had more severe symptoms of malaria as compared to Pc-infected pregnant WT mice. Thus, although SLE susceptibility was not protective in PM in mice it also did not have a negative impact on reproductive fitness.