Molecules (May 2024)
Design, Synthesis, and Biological Evaluation of the Quorum-Sensing Inhibitors of <i>Pseudomonas aeruginosa</i> PAO1
Abstract
Due to the resistance of Gram-negative bacteria Pseudomonas aeruginosa PAO1 to most clinically relevant antimicrobials, the use of traditional antibiotic treatments in hospitals is challenging. The formation of biofilms, which is regulated by the quorum-sensing (QS) system of Pseudomonas aeruginosa (PA), is an important cause of drug resistance. There are three main QS systems in P. aeruginosa: the las system, the rhl system, and the pqs system. The inhibitors of the las system are the most studied. Previously, the compound AOZ-1 was found to have a certain inhibitory effect on the las system when screened. In this study, twenty-four compounds were designed and synthesized by modifying the Linker and Rings of AOZ-1. Using C. violaceum CV026 as a reporter strain, this study first assessed the inhibitory effects of new compounds against QS, and their SAR was investigated. Then, based on the SAR analysis of compound AOZ-1 derivatives, the parent core of AOZ-1 was replaced to explore the structural diversity. Then, nine new compounds were designed and synthesized with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one. The compound Y-31 (IC50 = 91.55 ± 3.35 µM) was found to inhibit the QS of C. violaceum CV026. Its inhibitory effect on C. violaceum CV026 was better than that of compound AOZ-1 (IC50 > 200 µM). Furthermore, biofilm formation is one of the important causes of Pseudomonas aeruginosa PAO1 resistance. In this study, it was found that compound Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, had the highest biofilm inhibition rate (40.44%). The compound Y-31 has a certain inhibitory effect on the production of PAO1 virulence factors (pyocyanin, rhamnolipid, and elastase) and swarming. When the concentration of compound Y-31 was 162.5 µM, the inhibition rates of pyocyanin, rhamnolipid, and elastase were 22.48%, 6.13%, and 22.67%, respectively. In vivo, the lifetime of wildtype Caenorhabditis elegans N2 infected with P. aeruginosa PAO1 was markedly extended by the new parent nucleus Y-31. This study also performed cytotoxicity experiments and in vivo pharmacokinetics experiments on the compound Y-31. In conclusion, this study identified a compound, Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, which is a potential agent for treating P. aeruginosa PAO1 that is resistant to antibiotics and offers a way to discover novel antibacterial medications.
Keywords