Scientific Reports (May 2021)

Berberine modulates hyper-inflammation in mouse macrophages stimulated with polyinosinic-polycytidylic acid via calcium-CHOP/STAT pathway

  • Hyun-Ju Kim,
  • Young-Jin Kim,
  • Wansu Park

DOI
https://doi.org/10.1038/s41598-021-90752-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Berberine is a well-known quaternary ammonium salt that is usually found in the roots of such plants as Phellodendron amurense and Coptis chinensis. However, the effects of berberine on double-stranded RNA (dsRNA)-induced macrophages have not been fully reported. In this study, we examined the anti-inflammatory effects of berberine on dsRNA [polyinosinic-polycytidylic acid; poly I:C]-induced macrophages. Levels of nitric oxide (NO), Prostaglandin E2 (PGE2), first apoptosis signal receptor (Fas; CD95), cytokines, intracellular calcium, phosphorylated I-kappa-B-alpha (IkB-α), phosphorylated p38 mitogen-activated protein kinase (MAPK), phosphorylated ERK1/2, phosphorylated signal transducer and activated transcription 3 (STAT3), and mRNA expression of inflammatory genes in poly I:C-induced RAW 264.7 mouse macrophages were evaluated. Berberine significantly inhibited the production of NO, PGE2, Fas, GM-CSF, LIF, LIX, RANTES, and MIP-2 as well as calcium release in poly I:C-induced RAW 264.7 cells at concentrations of up to 50 μM. Berberine also significantly inhibited the phosphorylation of p38 MAPK, ERK1/2, IkB-α, and STAT3 in poly I:C-induced RAW 264.7 cells. Additionally, berberine significantly decreased the mRNA expressions of Chop (GADD153), Stat1, Stat3, and Fas in poly I:C-induced RAW 264.7 cells. Taken together, berberine has anti-inflammatory properties related to its inhibition of NO, PGE2, Fas, GM-CSF, LIF, LIX, RANTES, and MIP-2 in dsRNA-induced macrophages via the endoplasmic reticulum stress-related calcium-CHOP/STAT pathway.