Sustainable Chemistry (Jun 2022)

Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction

  • Muhammad Asad,
  • Afzal Shah,
  • Faiza Jan Iftikhar,
  • Rafia Nimal,
  • Jan Nisar,
  • Muhammad Abid Zia

DOI
https://doi.org/10.3390/suschem3030018
Journal volume & issue
Vol. 3, no. 3
pp. 286 – 299

Abstract

Read online

Water splitting has emerged as a sustainable, renewable and zero-carbon-based energy source. Water undergoes hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) during electrolysis. However, among these half-cell reactions, OER is more energy demanding. Hence, the development of efficient catalysts for speeding up OER is a key for boosting up the commercial viability of electrolyzers. Typical binders like Nafion and PVDF are not preferred for designing commercial electrocatalysts as they can compromise conductivity. Thus, we have designed a novel and cost-effective binder-free tetra-metallic (Co-Cu-Zn-Fe) oxide catalyst that efficiently catalyzes OER. This catalyst was grown over the surface of Fluorine doped tin oxide (FTO) transducer by a facile potentiodynamic method. The structure and morphology of the modified electrode were characterized by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD analysis confirmed the deposition of CoFe2O4 and CuCo2O4 along with alloy formation of Co-Fe and Co-Cu. Similarly, EDX and SEM results show the presence of metals at the surface of FTO in accordance with the results of XRD. Linear scan voltammetry was employed for testing the performance of the catalyst towards accelerating OER in strongly alkaline medium of pH-13. The catalyst demonstrated stunning OER catalytic performance, with an overpotential of just 216 mV at 10 mA cm−2 current density. Moreover, the chronopotentiometric response revealed that the designed catalyst was stable at a potential of 1.80 V for 16 h. Thus, the designed catalyst is the first example of a highly stable, efficient, and inexpensive catalyst that catalyzes OER at the lowest overpotential.

Keywords