Advances in Nonlinear Analysis (Feb 2014)
Calderón–Zygmund theory for parabolic obstacle problems with nonstandard growth
Abstract
We establish local Calderón–Zygmund estimates for solutions to certain parabolic problems with irregular obstacles and nonstandard p(x,t)${p(x,t)}$-growth. More precisely, we will show that the spatial gradient Du${Du}$ of the solution to the obstacle problem is as integrable as the obstacle ψ${\psi }$, i.e. |Dψ|p(·),|∂tψ|γ1'∈L loc q⇒|Du|p(·)∈L loc q,foranyq>1,$ |D\psi |^{p(\,\cdot \,)},|\partial _t\psi |^{\gamma _1^{\prime }}\in L^q_\mathrm {loc}\Rightarrow |Du|^{p(\,\cdot \,)}\in L^q_\mathrm {loc},\quad \text{for any}~q>1, $ where γ1'=γ1γ1-1${\gamma _1^{\prime }=\frac{\gamma _1}{\gamma _1-1}}$ and γ1${\gamma _1}$ is the lower bound for p(·)${p(\,\cdot \,)}$.
Keywords