Geotechnics (Aug 2023)
Empirical Equations Expressing the Effects of Measured Suction on the Compaction Curve for Sandy Soils Varying Fines Content
Abstract
To effectively apply various soil types for embankments, understanding their compaction characteristics is crucial. One crucial factor affecting compaction is suction, which plays a significant role as it is typically performed under unsaturated conditions. Suction varies with soil density, water content, and fines content. This study directly measures suction after soil compaction using the triaxial apparatus, unlike the Soil water characteristic curve (SWCC), assessing its impact on compaction characteristics. Immediate suction measurement after compaction provides apparent suction, resembling on-site conditions with open pore air pressure. Comparing SWCC with apparent suction at each compacted state reveals that suction and air entry value increase with initial density, positively impacting compaction. Notably, apparent suction aligns better with wetting process suction from the SWCC due to added water during specimen preparation. Empirical equations are derived to obtain suction contours across various density and saturation ranges, aiding in understanding suction variations on the compaction curve. Even slight variations in saturation causes noticeable changes in apparent suction during higher compaction efforts, affecting soil compaction characteristics. Therefore, the precise control of saturation control is needed to achieve desired properties of compacted soil, especially at higher compaction efforts and with various soil types. This understanding significantly impacts the mechanical behavior of unsaturated soils.
Keywords