Forests (Sep 2023)

Mountain Forest Type Classification Based on One-Dimensional Convolutional Neural Network

  • Maoyang Bai,
  • Peihao Peng,
  • Shiqi Zhang,
  • Xueman Wang,
  • Xiao Wang,
  • Juan Wang,
  • Petri Pellikka

DOI
https://doi.org/10.3390/f14091823
Journal volume & issue
Vol. 14, no. 9
p. 1823

Abstract

Read online

Convolutional neural networks (CNNs) have demonstrated their efficacy in remote sensing applications for mountain forest classification. However, two-dimensional convolutional neural networks (2D CNNs) require a significant manual involvement in the visual interpretation to obtain continuous polygon label data. To reduce the errors associated with manual visual interpretation and enhance classification efficiency, it is imperative to explore alternative approaches. In this research, we introduce a novel one-dimensional convolutional neural network (1D CNN) methodology that directly leverages field investigation data as labels for classifying mountain forest types based on multiple remote sensing data sources. The hyperparameters were optimised using an orthogonal table, and the model’s performance was evaluated on Mount Emei of Sichuan Province. Comparative assessments with traditional classification methods, namely, a random forest (RF) and a support vector machine (SVM), revealed superior results obtained by the proposed 1D CNN. Forest type classification using the 1D CNN achieved an impressive overall accuracy (OA) of 97.41% and a kappa coefficient (Kappa) of 0.9673, outperforming the U-Net (OA: 94.45%, Kappa: 0.9239), RF (OA: 88.99%, Kappa: 0.8488), and SVM (OA: 88.79%, Kappa: 0.8476). Moreover, the 1D CNN model was retrained using limited field investigation data from Mount Wawu in Sichuan Province and successfully classified forest types in that region, thereby demonstrating its spatial-scale transferability with an OA of 90.86% and a Kappa of 0.8879. These findings underscore the effectiveness of the proposed 1D CNN in utilising multiple remote sensing data sources for accurate mountain forest type classification. In summary, the introduced 1D CNN presents a novel, efficient, and reliable method for mountain forest type classification, offering substantial contributions to the field.

Keywords