Biomolecules (May 2014)

Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding

  • Aya Kojima,
  • Motomi Konishi,
  • Toshifumi Akizawa

DOI
https://doi.org/10.3390/biom4020510
Journal volume & issue
Vol. 4, no. 2
pp. 510 – 526

Abstract

Read online

Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.

Keywords