Nature Communications (Jan 2022)

Mini-batch optimization enables training of ODE models on large-scale datasets

  • Paul Stapor,
  • Leonard Schmiester,
  • Christoph Wierling,
  • Simon Merkt,
  • Dilan Pathirana,
  • Bodo M. H. Lange,
  • Daniel Weindl,
  • Jan Hasenauer

DOI
https://doi.org/10.1038/s41467-021-27374-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 17

Abstract

Read online

Ordinary differential equation (ODE) models are widely used to understand multiple processes. Here the authors show how the concept of mini-batch optimization can be transferred from the field of Deep Learning to ODE modelling.