Forum of Mathematics, Sigma (Jan 2021)

Primary decomposition in the smooth concordance group of topologically slice knots

  • Jae Choon Cha

DOI
https://doi.org/10.1017/fms.2021.46
Journal volume & issue
Vol. 9

Abstract

Read online

We address primary decomposition conjectures for knot concordance groups, which predict direct sum decompositions into primary parts. We show that the smooth concordance group of topologically slice knots has a large subgroup for which the conjectures are true and there are infinitely many primary parts, each of which has infinite rank. This supports the conjectures for topologically slice knots. We also prove analogues for the associated graded groups of the bipolar filtration of topologically slice knots. Among ingredients of the proof, we use amenable $L^2$ -signatures, Ozsváth-Szabó d-invariants and Némethi’s result on Heegaard Floer homology of Seifert 3-manifolds. In an appendix, we present a general formulation of the notion of primary decomposition.

Keywords