Energies (Nov 2023)

Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation

  • Teresa Donateo

DOI
https://doi.org/10.3390/en16227676
Journal volume & issue
Vol. 16, no. 22
p. 7676

Abstract

Read online

In recent years, there has been a growing interest in utilizing hydrogen as an energy carrier across various transportation sectors, including aerospace applications. This interest stems from its unique capability to yield energy without generating direct carbon dioxide emissions. The conversion process is particularly efficient when performed in a fuel cell system. In aerospace applications, two crucial factors come into play: power-to-weight ratio and the simplicity of the powerplant. In fact, the transient behavior and control of the fuel cell are complicated by the continuously changing values of load and altitude during the flight. To meet these criteria, air-cooled open-cathode Proton Exchange Membrane (PEM) fuel cells should be the preferred choice. However, they have limitations regarding the amount of thermal power they can dissipate. Moreover, the performances of fuel cell systems are significantly worsened at high altitude operating conditions because of the lower air density. Consequently, they find suitability primarily in applications such as Unmanned Aerial Vehicles (UAVs) and Urban Air Mobility (UAM). In the case of ultralight and light aviation, liquid-cooled solutions with a separate circuit for compressed air supply are adopted. The goal of this investigation is to identify the correct simulation approach to predict the behavior of such systems under dynamic conditions, typical of their application in aerial vehicles. To this aim, a detailed review of the scientific literature has been performed, with specific reference to semi-empirical and control-oriented models of the whole fuel cell systems including not only the stack but also the complete balance of plant.

Keywords