BMC Biomedical Engineering (Dec 2019)

The problem with skeletal muscle series elasticity

  • Walter Herzog

DOI
https://doi.org/10.1186/s42490-019-0031-y
Journal volume & issue
Vol. 1, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Muscles contain contractile and (visco-) elastic passive components. At the latest since Hill’s classic works in the 1930s, it has been known that these elastic components affect the length and rate of change in length of the contractile component, and thus the active force capability of dynamically working muscles. In an attempt to elucidate functional properties of these muscle elastic components, scientists have introduced the notion of “series” and “parallel” elasticity. Unfortunately, this has led to much confusion and erroneous interpretations of results when the mechanical definitions of parallel and series elasticity were violated. In this review, I will focus on muscle series elasticity, by first providing the mechanical definition for series elasticity, and then provide theoretical and experimental examples of the concept of series elasticity. Of particular importance is the treatment of aponeuroses. Aponeuroses are not in series with the tendon of a muscle nor the muscle’s contractile elements. The implicit and explicit treatment of aponeuroses as series elastic elements in muscle has led to incorrect conclusions about aponeuroses stiffness and Young’s modulus, and has contributed to vast overestimations of the storage and release of mechanical energy in cyclic muscle contractions. Series elasticity is a defined mechanical concept that needs to be treated carefully when applied to skeletal muscle mechanics. Measuring aponeuroses mechanical properties in a muscle, and its possible contribution to the storage and release of mechanical energy is not trivial, and to my best knowledge, has not been (correctly) done yet.

Keywords