BMC Evolutionary Biology (Aug 2017)
Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia
Abstract
Abstract Background The Asimina-Disepalum clade (Annonaceae subfam. Annonoideae tribe Annoneae) includes a major Neotropical-Asian biogeographical disjunction. We evaluate whether this disjunction can be explained by the Eocene boreotropics hypothesis, which relies on the existence of extensive boreotropical forests during the Late Palaeocene-Early Eocene thermal maximum (52–50 Ma), followed by disruption of boreotropical vegetation during post-Eocene cooling. Molecular dating using an uncorrelated relaxed molecular clock (UCLD) model with two fossil calibrations, ancestral range estimation, and ecological niche modelling across evolutionary time were performed. Our focus was the geographical origin of Disepalum and general biogeographic patterns within this genus. Comparison of ecological tolerance among extant species and niche reconstructions at ancestral nodes within the clade enabled insights in likely migration routes of lineages, as well as evaluating the role of bioclimatic ecological differentiation in the diversification of Disepalum within Southeast Asia. Results The inferred vicariance event associated with the Asimina-Disepalum disjunction is estimated to have originated ca. 40 Mya [95% highest posterior density (HPD): 44.3–35.5 Mya]. The Disepalum crown lineage is estimated to have originated ca. 9 Mya (95% HPD: 10.6–7.6), either in western Malesia and continental Southeast Asia, or exclusively in western Malesia. Ecological niche modelling shows that seasonality of temperature and precipitation are major contributors determining the geographical range of species. Ancestral niche modelling furthermore indicates that the ancestor of the Asimina-Disepalum clade likely had bioclimatic preferences close to conditions found in current tropical and subtropical climates across Asia, whereas the ancestors of the Asimina and Disepalum crown groups are projected onto the more subtropical and tropical regions, respectively. Conclusions The vicariance event associated with the Neotropical-Asian disjunction within the Asimina-Disepalum clade likely coincided with climatic deterioration at the Eocene-Oligocene boundary. Although detrended component analyses (DCA) indicate that altitude and seasonality of temperature and precipitation have the greatest influence in determining the geographical range of species, isolation due to palaeogeographic and palaeoclimatic events appears to be of greater significance than climate niche differentiation in driving diversification in Disepalum.
Keywords