Atmosphere (Oct 2023)

Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau

  • Yuanpu Liu,
  • Sheng Wang,
  • Chongshui Gong,
  • Dingwen Zeng,
  • Yulong Ren,
  • Xia Li

DOI
https://doi.org/10.3390/atmos14101528
Journal volume & issue
Vol. 14, no. 10
p. 1528

Abstract

Read online

Land surface parameters are crucial in land surface process model simulations. Considering the complex land surface characteristics of the Loess Plateau, a parametric sensitivity analysis was conducted to determine the key parameters of its Noah Multi-Parameterization (Noah-MP) land surface model. Sensitivity analysis can better elucidate the influence of different parameters on the model simulation results and evaluate the rationality of each model parameter. The extended Fourier amplitude sensitivity test (EFAST) method is a classical global sensitivity analysis method, whose theory is derived from the analysis of variance and Fourier transform. In this study, the EFAST method was used to perform sensitivity analyses on the land surface characteristic parameters in different climatic regions of the Loess Plateau. The results showed that the Noah-MP model can represent the land surface characteristics of the Loess Plateau well. With sensible and latent heat fluxes as criteria, the main sensitivity parameters were the vegetation roughness length (Z0), the soil quartz content (QUARTZ), the maximum volumetric soil moisture (MAXSMC), and the soil parameter “b”. The coupling effect between parameters has a greater impact on the sensitivity analysis. The probability densities of the three most sensitive parameters were evenly distributed in each interval, whereas those of the other parameters were distributed within 0–0.2 of the standardized value. Moreover, almost half of the land surface parameters accounted for 80% of the total sensitivity. Based on the seasonal sensitivity distribution of the land surface parameters, Z0 dominated throughout all four seasons, QUARTZ sensitivity was high in spring, and both MAXSMC and QUARTZ showed high sensitivities in winter.

Keywords