PLoS ONE (Jul 2007)

Cortical modulations increase in early sessions with brain-machine interface.

  • Miriam Zacksenhouse,
  • Mikhail A Lebedev,
  • Jose M Carmena,
  • Joseph E O'Doherty,
  • Craig Henriquez,
  • Miguel A L Nicolelis

DOI
https://doi.org/10.1371/journal.pone.0000619
Journal volume & issue
Vol. 2, no. 7
p. e619

Abstract

Read online

BACKGROUND:During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE:We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.