Scientific Reports (Apr 2021)

Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities

  • Marwa Eltarahony,
  • Marwa Abu-Serie,
  • Hesham Hamad,
  • Sahar Zaki,
  • Desouky Abd-El-Haleem

DOI
https://doi.org/10.1038/s41598-021-87363-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 22

Abstract

Read online

Abstract The quest for eco-friendly and biocompatible nanoparticles (NPs) is an urgent issue in the agenda of the scientific community and applied technology, which compressing synthesis routes. For the first time, a simple route for the biosynthesis of functionalized CuFe-hybrid nanocomposites (FCFNCs) was achieved using Streptomyces cyaneofuscatus through a simultaneous bioreduction strategy of Cu and Fe salts. The suitability of FCFNCs was evaluated medically and environmentally as an anticancer agent, antimicrobial agent and dye bio-sorbent. The physicochemical characteristics of FCFNCs using XRD, EDX, elemental mapping, FTIR, UV–Vis., TEM and ζ-potential confirmed the formation of spheres agglomerated into chains (37 ± 2.2 nm), self-functionalized nanocomposite by proteinaceous moieties with considerable stability (− 26.2 mV). As an anticancer agent, FCFNCs displayed the highest apoptotic impact (> 77.7%) on Caco-2, HepG-2, MCF-7 and PC-3 cancer cells at IC50 ≤ 17.21 μg/mL with the maximum up regulation of p53 and caspase 3 expression and the lowest Ki-67 level, relative to both functionalized CuNPs (FCNPs) and FeNPs (FFNPs). Meanwhile, it maintained the viability of normal human cells by EC100 up to 1999.7 μg/mL. Regarding the antimicrobial activity, FCFNCs offered > 70% growth reduction among wide spectrum prokaryotic and eukaryotic pathogens. Additionally, the synergistic feature of FCFNCs disintegrated the pre-established biofilm and algal growth in a dose-dependent manner. However, as a bio-sorbent, FCFNCs decolorized > 68% of malachite green and congo red dyes (200 mg/L), reflecting considerable remediation efficiency, confirmed by FTIR of FCFNCs- adsorbed dyes and microtoxicity/cytotoxicity of solutions after remediation. This study offers new insights into promising CuFe-hybrid nanocomposites for recruitment in several applications.