Translational Medicine Communications (Feb 2022)

Global conserved RBD fraction of SARS-CoV-2 S-protein with T500S mutation in silico significantly blocks ACE2 and rejects viral spike

  • Amrita Banerjee,
  • Mehak Kanwar,
  • Dipannita Santra,
  • Smarajit Maiti

DOI
https://doi.org/10.1186/s41231-022-00109-5
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background SARS-CoV-2 developed global-pandemic with millions of infections/deaths. As it is urgently necessary it is assumed that some blockers/inhibitors of ACE2 could be helpful to resist the binding of viral-spike Receptor-Binding-Domain (RBD). Methods Here, conserved RBD from 186-countries were compared with WUHAN-Hu-1 wild-type (CLUSTAL-X2/Pymol). The RBD of ACE2-bound nCOV2 crystal-structure 6VW1 was analyzed by Haddock-PatchDock. Extensive structural study/trial to introduce point/double/triple mutations in the different locations of CUT4 (most-effective from total 4 proposed fragments; CUTs) were tested with Swiss-Model-Expacy. Results Blind-docking of mutated-CUTs in ACE2 completely rejected the nCOV2 binding to ACE2. Further, competitive-docking/binding-analyses (by PRODIGY) demonstrated few more bonding (LYS31-PHE490 and GLN42-GLN498) of CUT4 (than wild) and hindered TYR41-THR500 interaction with ACE2. Moreover, mutated-CUT4 even showed higher blocking effect against spike-ACE2 binding. Conclusion In summary, CUT4-mutant rejects whole glycosylated-nCoV2 in all pre-dock, post-dock and competitive-docking conditions. The present work strategy is relevant because it could be able to block at the first level entry of the virus to the host cells.

Keywords