IEEE Access (Jan 2020)
Common-Aperture Sub-6 GHz and Millimeter-Wave 5G Antenna System
Abstract
The realization of a common-aperture (or shared-aperture) 5G antenna system is proposed for compact and integrated wireless devices. As a combination of a dipole and tapered slots, an integrated antenna design, which operates at multi-bands, i.e. sub-6 GHz at 3.6 GHz and mm-wave at 28 GHz, is validated. The antenna design procedure starts with a dipole operating at 3.6 GHz, which is fed by a modified balun consisting of a tapered slot and a microstrip line. Here, the tapered slot has a dual feature, i.e., it is used to excite the dipole at 3.6 GHz and works as a tapered slot antenna at 28 GHz. Only a single feeder is optimized and used for both structures making the design unique and provides an extremely large frequency ratio. Moreover, the dipole's arms are utilized as an antenna footprint for two tapered slot mm-wave arrays, making the dipole dual-functional. The tapered slot antenna and the mm-wave arrays are optimized in a way that the main beams point at different directions. By this configuration, the design is able to cover an angle of 120° of space in θ-direction. As a proof of concept, a prototype is fabricated on Rogers RO-5880 with an overall size of 75 × 25 × 0.254 mm3. The simulated and measured results confirm the validity of the proposed concept.
Keywords