eLife (Sep 2019)

An arbitrary-spectrum spatial visual stimulator for vision research

  • Katrin Franke,
  • André Maia Chagas,
  • Zhijian Zhao,
  • Maxime JY Zimmermann,
  • Philipp Bartel,
  • Yongrong Qiu,
  • Klaudia P Szatko,
  • Tom Baden,
  • Thomas Euler

DOI
https://doi.org/10.7554/eLife.48779
Journal volume & issue
Vol. 8

Abstract

Read online

Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to six arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist’s needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. With this work, we intend to start a community effort of sharing and developing a common stimulator design for vision research.

Keywords