Hemijska Industrija (Jan 2012)

PVC mixtures’ mechanical properties with the addition of modified calcite as filler

  • Vučinić Dušica R.,
  • Jovanović Vladimir D.,
  • Kolonja Božo M.,
  • Sekulić Živko T.,
  • Mihajlović Slavica R.

DOI
https://doi.org/10.2298/HEMIND111115025M
Journal volume & issue
Vol. 66, no. 5
pp. 787 – 794

Abstract

Read online

In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler) such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

Keywords