Ocean Science (Aug 2021)

Simulated zonal current characteristics in the southeastern tropical Indian Ocean (SETIO)

  • N. S. Ningsih,
  • S. L. Sakina,
  • R. D. Susanto,
  • R. D. Susanto,
  • F. Hanifah

DOI
https://doi.org/10.5194/os-17-1115-2021
Journal volume & issue
Vol. 17
pp. 1115 – 1140

Abstract

Read online

Detailed ocean currents in the southeastern tropical Indian Ocean adjacent to southern Sumatran and Javan coasts have not been fully explained because of limited observations. In this study, zonal current characteristics in the region have been studied using simulation results of a 1/8∘ global hybrid coordinate ocean model from 1950 to 2013. The simulated zonal currents across three meridional sections were then investigated using an empirical orthogonal function (EOF), where the first three modes account for 75 %–98 % of the total variance. The first temporal mode of EOF is then investigated using ensemble empirical mode decomposition (EEMD) to distinguish the signals. This study has revealed distinctive features of currents in the South Java Current (SJC) region, the Indonesian Throughflow (ITF)–South Equatorial Current (SEC) region, and the transition zone between these regions. The vertical structures of zonal currents in southern Java and offshore Sumatra are characterized by a one-layer flow. Conversely, a two-layer flow is observed in the nearshore and transition regions of Sumatra. Current variation in the SJC region has peak energies that are sequentially dominated by semiannual, intraseasonal, and annual timescales. Meanwhile, the transition zone is characterized by semiannual and intraseasonal periods with pronounced interannual variations. In contrast, interannual variability associated with El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) modulates the prominent intraseasonal variability of current in the ITF–SEC region. ENSO has the strongest influence at the outflow ITF, while the IOD's strongest influence is in southwestern Sumatra, with the ENSO (IOD) leading the current by 4 months (1 month). Moreover, the contributions (largest to smallest) of each EEMD mode at the nearshore of Java and offshore Sumatra are intraseasonal, semiannual, annual, interannual, and long-term fluctuations. The contribution of long-term variation (19.2 %) in the far offshore eastern Indian Ocean is larger than the interannual (16.3 %) and annual (14.7 %) variations. Future studies should be conducted to investigate this long-term variation.