Atmospheric Chemistry and Physics (May 2015)

Quasi-biennial oscillation of the tropical stratospheric aerosol layer

  • R. Hommel,
  • C. Timmreck,
  • M. A. Giorgetta,
  • H. F. Graf

DOI
https://doi.org/10.5194/acp-15-5557-2015
Journal volume & issue
Vol. 15, no. 10
pp. 5557 – 5584

Abstract

Read online

This study describes how aerosol in an aerosol-coupled climate model of the middle atmosphere is influenced by the quasi-biennial oscillation (QBO) during times when the stratosphere is largely unperturbed by volcanic material. In accordance with satellite observations, the vertical extent of the stratospheric aerosol layer in the tropics is modulated by the QBO by up to 6 km, or ~ 35% of its mean vertical extent between 100–7 hPa (about 16–33 km). Its largest vertical extent lags behind the occurrence of strongest QBO westerlies. The largest reduction lags behind maximum QBO easterlies. Strongest QBO signals in the aerosol surface area (30 %) and number densities (up to 100% e.g. in the Aitken mode) are found in regions where aerosol evaporates, that is above the 10 hPa pressure level (~ 31 km). Positive modulations are found in the QBO easterly shear, negative modulations in the westerly shear. Below 10 hPa, in regions where the aerosol mixing ratio is largest (50–20 hPa, or ~ 20–26 km), in most of the analysed parameters only moderate statistically significant QBO signatures ( QBO signatures in the model prognostic aerosol mixing ratio are significant at the 95% confidence level throughout the tropical stratosphere where modelled mixing ratios exceed 0.1 ppbm. In some regions of the tropical lower stratosphere the QBO signatures in other analysed parameters are partly not statistically significant. Peak-to-peak amplitudes of the QBO signature in the prognostic mixing ratios are up to twice as large as seasonal variations in the region where aerosols evaporate and between 70–30 hPa. Between the tropical tropopause and 70 hPa the QBO signature is relatively weak and seasonal variations dominate the variability of the simulated Junge layer. QBO effects on the upper lid of the tropical aerosol layer turn the quasi-static balance between processes maintaining the layer's vertical extent into a cyclic balance when considering this dominant mode of atmospheric variability. Global aerosol-interactive models without a QBO are only able to simulate the quasi-static balance state. To assess the global impact of stratospheric aerosols on climate processes, those partly nonlinear relationships between the QBO and stratospheric aerosols have to be taken into account.