Energies (Oct 2024)
A Lyapunov Theory-Based SEIG–STATCOM Voltage Regulation Control Strategy
Abstract
To improve the voltage regulation of asynchronous generators during load switching, a Lyapunov-based control strategy has been proposed to stabilize the generator’s voltage by connecting a static synchronous compensator. By constructing a Lyapunov function from the mathematical model, the error tracking problem is transformed into a global asymptotic stability problem of the Lyapunov function at the equilibrium point. The outer loop linearizes the direct current (DC) voltage control process, while the inner loop replaces integral terms with differential terms. The proposed Lyapunov method achieves linearized voltage control with a quadratic outer loop structure and the inner loop differential structure exhibits a shorter transient process, outperforming traditional methods. Simulation and experimental tests were then used, where the latter was a down-scale laboratory prototype experiment. Compared to traditional (voltage-oriented control) VOC, the outer loop (Lyapunov-function-based control) LBC reduces the DC voltage transient processes by approximately 9.4 milliseconds, while the inner loop LBC reduces both alternating current (AC) and DC voltage transient processes by approximately 2.6 ms and 8.7 ms, respectively.
Keywords