Molecular Cancer (Feb 2020)

CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer

  • Haiyang Zhang,
  • Ting Deng,
  • Rui Liu,
  • Tao Ning,
  • Haiou Yang,
  • Dongying Liu,
  • Qiumo Zhang,
  • Dan Lin,
  • Shaohua Ge,
  • Ming Bai,
  • Xinyi Wang,
  • Le Zhang,
  • Hongli Li,
  • Yuchong Yang,
  • Zhi Ji,
  • Hailong Wang,
  • Guoguang Ying,
  • Yi Ba

DOI
https://doi.org/10.1186/s12943-020-01168-8
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Ferroptosis is a novel mode of non-apoptotic cell death induced by build-up of toxic lipid peroxides (lipid-ROS) in an iron dependent manner. Cancer-associated fibroblasts (CAFs) support tumor progression and drug resistance by secreting various bioactive substances, including exosomes. Yet, the role of CAFs in regulating lipid metabolism as well as ferroptosis of cancer cells is still unexplored and remains enigmatic. Methods Ferroptosis-related genes in gastric cancer (GC) were screened by using mass spectrum; exosomes were isolated by ultra-centrifugation and CAF secreted miRNAs were determined by RT-qPCR. Erastin was used to induce ferroptosis, and ferroptosis levels were evaluated by measuring lipid-ROS, cell viability and mitochondrial membrane potential. Results Here, we provide clinical evidence to show that arachidonate lipoxygenase 15 (ALOX15) is closely related with lipid-ROS production in gastric cancer, and that exosome-miR-522 serves as a potential inhibitor of ALOX15. By using primary stromal cells and cancer cells, we prove that exosome-miR-522 is mainly derived from CAFs in tumor microenvironment. Moreover, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was found to mediate miR-522 packing into exosomes, and ubiquitin-specific protease 7 (USP7) stabilizes hnRNPA1 through de-ubiquitination. Importantly, cisplatin and paclitaxel promote miR-522 secretion from CAFs by activating USP7/hnRNPA1 axis, leading to ALOX15 suppression and decreased lipid-ROS accumulation in cancer cells, and ultimately result in decreased chemo-sensitivity. Conclusions The present study demonstrates that CAFs secrete exosomal miR-522 to inhibit ferroptosis in cancer cells by targeting ALOX15 and blocking lipid-ROS accumulation. The intercellular pathway, comprising USP7, hnRNPA1, exo-miR-522 and ALOX15, reveals new mechanism of acquired chemo-resistance in GC. Graphical abstract

Keywords