Mathematics (May 2023)

Bubble Sliding Characteristics and Dynamics of R134a during Subcooled Boiling Flow in a Narrow Gap

  • Bo Yu,
  • Jinfeng Wang,
  • Jing Xie,
  • Bingjun Wang,
  • Fei Wang,
  • Meng Deng

DOI
https://doi.org/10.3390/math11092197
Journal volume & issue
Vol. 11, no. 9
p. 2197

Abstract

Read online

The numerical method was used to study bubble sliding characteristics and dynamics of R134a during subcooled flow boiling in a narrow gap. In the numerical method, the volume of fraction (VOF) model, level set method, Lee phase change model and the SST k − ω turbulent model were adopted for the construction of the subcooled flow boiling model. In order to explore bubble sliding dynamics during subcooled flow boiling, the bubble sliding model was introduced. The bubble velocity, bubble departure diameter, sliding distance and bubble sliding dynamics were investigated at 0.2 to 5 m/s inlet velocities. The simulation results showed that the bubble velocity at the flow direction was the most important contribution to bubble velocity. Additionally, the bubble velocity of 12 bubbles mostly oscillated with time during the sliding process at 0.2 to 0.6 m/s inlet velocities, while the bubble velocity increased during the sliding process due to the bubble having had a certain inertia at 2 to 5 m/s inlet velocities. It was also found that the average bubble velocity in flow direction accounted for about 80% of the mainstream velocities at 0.2 to 5 m/s. In the investigation of bubble sliding distance and departure diameter, it was concluded that the ratio of the maximum sliding distance to the minimum sliding distance was close to two at inlet velocities of 0.3 to 5 m/s. Moreover, with increasing inlet velocity, the average sliding distance increased significantly. The average bubble departure diameter obviously increased from 0.2 to 0.5 m/s inlet velocity and greatly reduced after 0.6 m/s. Finally, the investigations of the bubble sliding dynamics showed that the surface tension dominated the bubble sliding process at 0.2 to 0.6 m/s inlet velocities. However, the drag force dominated the bubble sliding process at 2 to 5 m/s inlet velocities.

Keywords