Molecular Plant-Microbe Interactions (Nov 1997)
The phtE Locus in the Phaseolotoxin Gene Cluster Has ORFs with Homologies to Genes Encoding Amino Acid Transferases, the AraC Family of Transcriptional Factors, and Fatty Acid Desaturases
Abstract
A cluster of genes involved in the production of phaseolotoxin, a phytotoxin produced by Pseudomonas syringae pv. phaseolicola, contains eight (phtA through phtH) complementation groups (Y. X. Zhang, K. B. Rowley, and S. S. Patil, J. Bacteriol., 175:6451–6458, 1993). In this study, sequencing of the region encompassing the phtE locus revealed six putative open reading frames (ORFs), each preceded by a putative ribosomal binding site, and all oriented in the same direction. Reverse transcription-polymerase chain reaction suggested that the phtE locus is transcribed as one large (6.4 kb) transcript, indicating that the ORFs constitute an operon. Primer extension analysis showed that the transcript begins at a T, located 31 bp upstream of the ATG codon of ORF1. Comparison of the sequences of the putative ORFs with the sequences of known genes revealed that ORF3, encoding a protein containing 395 amino acids, has 55% similarity to the acetylornithine aminotransferase gene from Escherichia coli, and the ornithine aminotransferase genes from other organisms. A lysine residue that is a binding site for pyridoxal phosphate and an arginine residue that is a binding site for the α-carboxylate group of the substrate are conserved in ORF3. These data suggest that ORF3 encodes a protein involved in the biosynthesis of ornithine, a constituent of phaseolotoxin. ORF5, encoding a peptide of 378 amino acid residues, possesses a helix-turn-helix motif at the C-terminal end that is characteristic of the AraC family of transcriptional factors, and there is a possible leucine zipper at the N-terminal end of this peptide. ORF6, encoding a protein of 327 amino acids, has about 40% similarity with the fatty acid desaturase gene, desA, of Synechocystis Pcc6803 and considerable similarity with fatty acid desaturase genes from other organisms. ORF6 and desA show very similar hydropathy profiles and both contain a copper binding signature. Computer searches did not discover significant homologies in the data base for the other ORFs, but hydropathy analysis showed that all of them contain one to several hydrophobic domains, suggesting that the gene products of these ORFs may be membrane associated.