Le Matematiche (Oct 2014)
Rational cuspidal curves with four cusps on Hirzebruch surfaces
Abstract
The purpose of this article is to shed light on the question of how many and what kind of cusps a rational cuspidal curve on a Hirzebruch surface can have. Our main result is a list of rational cuspidal curves with four cusps, their type, cuspidal congurations and the surfaces they lie on. We use birational transformations to construct these curves. Moreover, we find a general expression for and compute the Euler characteristic of the logarithmic tangent sheaf in these cases. Additionally, we show that there exists a real rational cuspidal curve with four real cusps. Last, we show that for rational cuspidal curves with two or more cusps on a Hirzebruch surface, there is a lower bound on one of the multiplicities.