Energetic Materials Frontiers (Dec 2023)

Synthesis and characterization of 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole: A high-nitrogen energetic material with low sensitivities and high thermal stability

  • Xun Huang,
  • Long Chen,
  • Hai-feng Huang,
  • Jun Yang

Journal volume & issue
Vol. 4, no. 4
pp. 221 – 228

Abstract

Read online

In this study, a high-nitrogen insensitive energetic material, 2-amino-4,5-bis(tetrazole-5-yl)-1,2,3-triazole (H2ABTT), was successfully synthesized by introducing the N-amino group on the 1,2,3-triazole ring. This compound exhibits excellent properties in many aspects. Compared to 4,5-bis(tetrazol-5-yl)-1,2,3-triazole (H3BTT), which has a decomposition temperature (Td) of 277 °C, nitrogen content of 75.11 %, density of 1.69 g cm−3, a detonation velocity of 8630 m s−1, a detonation velocity of 26.3 GPa, an impact sensitivity (IS) of 2 J, and a friction sensitivity (FS) of 240 N, H2ABTT exhibits higher thermal stability of Td:303 °C, higher nitrogen content of N%:76.35 %, higher density of 1.86 g cm−3, more desirable detonation properties (detonation velocity Dv: 9185 m s−1; detonation pressure p: 31.7 GPa), and lower mechanical sensitivities (IS > 100 J; FS > 360 N). Furthermore, H2ABTT outperforms insensitive explosive TATB (Dv = 8179 m s−1; p = 30.5 GPa; IS = 50 J; FS > 360 N) in some properties, making it a potential high-performance insensitive explosive. Besides, energetic salts 4–6 were successfully synthesized based on H2ABTT. The calculated results show that some of these salts even possess higher detonation performance compared to H2ABTT.

Keywords