Pinter: Jurnal Pendidikan Teknik Informatika dan Komputer (Jun 2017)

Klasifikasi Dokumen Karya Akhir Mahasiswa Menggunakan Naïve Bayes Classifier (NBC) Berdasarkan Abstrak Karya Akhir Di Jurusan Teknik Elektro Universitas Negeri Jakarta

  • Nur Indah Pratiwi ,
  • Widodo

DOI
https://doi.org/10.21009/pinter.1.1.5
Journal volume & issue
Vol. 1, no. 1
pp. 31 – 38

Abstract

Read online

Dokumen karya akhir di Jurusan Teknik Elektro Universitas Negeri Jakarta setiap tahunnya bertambah, pengklasifikasian dokumen menjadi hal yang sangat penting untuk mengorganisasikan dokumen sehingga dapat memudahkan pencarian. Pengembangan Sistem klasifikasi dokumen bertujuan untuk mengembangkan sebuah sistem yang dapat mengklasifikasikan dokumen karya akhir mahasiswa berdasarkan abstrak karya akhir menggunakan algoritma Naïve Bayes Classifier (NBC). Sehingga, dapat memudahkan pengklasifikasian dokumen karya akhir di Jurusan Teknik Elektro. Dalam penelitian ini menggunakan metode eksperimen dan menggunakan 100 dokumen abstrak, 90 dokumen sebagai data train dan 10 dokumen sebagai data test. Data diambil dari skripsi mahasiswa Jurusan Teknik Elektro Universitas Negeri Jakarta dari 14 Maret 2014 sampai dengan 27 Maret 2014. Setelah melakukan proses pengembangan perangkat lunak, dihasilkan sebuah sistem klasifikasi yang bernama Sistem Klasifikasi Dokumen Skripsi. Sistem di implementasi menggunakan PHP dan MySQL, dan diuji menggunakan K-Fold Cross Validation (10 Fold). Berdasarkan pada hasil uji Sistem didapatkan hasil tingkat akurasi sebesar 81%. Oleh karena itu, dapat disimpulkan bahwa Sistem Klasifikasi Dokumen Abstrak Karya Akhir Menggunakan Algoritma Naïve Bayes di Jurusan Teknik Elektro telah berhasil dikembangkan.

Keywords