Proteomes (Sep 2022)

Viral Biomarker Detection and Validation Using MALDI Mass Spectrometry Imaging (MSI)

  • Matthew B. O’Rourke,
  • Ben R. Roediger,
  • Christopher J. Jolly,
  • Ben Crossett,
  • Matthew P. Padula,
  • Phillip M. Hansbro

DOI
https://doi.org/10.3390/proteomes10030033
Journal volume & issue
Vol. 10, no. 3
p. 33

Abstract

Read online

(1) Background: MALDI imaging is a technique that still largely depends on time of flight (TOF)-based instrument such as the Bruker UltrafleXtreme. While capable of performing targeted MS/MS, these instruments are unable to perform fragmentation while imaging a tissue section necessitating the reliance of MS1 values for peptide level identifications. With this premise in mind, we have developed a hybrid bioinformatic/image-based method for the identification and validation of viral biomarkers. (2) Methods: Formalin-Fixed Paraffin-Embedded (FFPE) mouse samples were sectioned, mounted and prepared for mass spectrometry imaging using our well-established methods. Peptide identification was achieved by first extracting confident images corresponding to theoretical viral peptides. Next, those masses were used to perform a Peptide Mmass Fingerprint (PMF) searched against known viral FASTA sequences against a background mouse FASTA database. Finally, a correlational analysis was performed with imaging data to confirm pixel-by-pixel colocalization and intensity of viral peptides. (3) Results: 14 viral peptides were successfully identified with significant PMF Scores and a correlational result of >0.79 confirming the presence of the virus and distinguishing it from the background mouse proteins. (4) Conclusions: this novel approach leverages the power of mass spectrometry imaging and provides confident identifications for viral proteins without requiring MS/MS using simple MALDI Time Of Flight/Time Of Flight (TOF/TOF) instrumentation.

Keywords