Техника и технология пищевых производств (Dec 2022)

Rheological Properties of Mayonnaise with Non-Traditional Ingredients

  • Sergey A. Bredikhin,
  • Alexander N. Martekha,
  • Vladimir N. Andreev,
  • Yuliya E. Kaverina,
  • Igor A. Korotkiy

DOI
https://doi.org/10.21603/2074-9414-2022-4-2402
Journal volume & issue
Vol. 52, no. 4
pp. 739 – 749

Abstract

Read online

Rheological measurements are used in the food industry to determine physical characteristics of raw materials, as well as semi-finished and finished products. We aimed to study the effects of ingredients and homogenization parameters on the rheological properties of mayonnaise prepared with pumpkin and rice oils, as well as various honeys. Mayonnaise samples were prepared with non-traditional ingredients, namely cold-pressed pumpkin seed oil, refined rice oil, and four varieties of honey (acacia, linden, forest, and spring). The samples were made in the traditional way on an Ultra Turrax T25 IKA homogenizer (3500–24 000 rpm). The rheological properties of honey and mayonnaise were determined on a Brookfield rotational viscometer. Forest honey had the highest viscosity, while linden honey had the lowest viscosity, compared to the other honeys. The sample of mayonnaise with forest honey had the highest effective viscosity (3.427 Pa·s) and consistency (101.26 Pa·sn). The use of whey powder provided mayonnaise with the most optimal rheological parameters. Of all carbohydrates, inulin HD had the best effect on the consistency of mayonnaise, with effective viscosity of 2.801 ± 0.001 Pa·s and a flow index of 0.2630 ± 0.0020. Disaccharides provided mayonnaise with higher viscosity and consistency than monosaccharides. Mayonnaise with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pa·s) and consistency (65.640 ± 0.004 Pa·s) than the samples with other egg products. The rheological characteristics of mayonnaise were also determined by the homogenization time and rotor speed. Increasing the time from 2 to 4 min at 10 000 rpm raised the emulsion’s viscosity and consistency from 6.253 to 8.736 Pa·s and from 77.42 to 134.24 Pa·sn, respectively, as well as reduced the flow index from 0.2628 to 0.1995. The rotor speed of 10 000–12 000 rpm was optimal for mayonnaise with pumpkin and rice oils and honey. The studied samples of mayonnaise with pumpkin and rice oils, as well as honey, belong to non-Newtonian systems and pseudoplastic fluids. The empirical flow curves can be adequately described by the Herschel-Bulkley model. Our results can significantly increase the efficiency of mayonnaise production, improve its quality, and reduce production costs.

Keywords