Automation (Nov 2022)
Detection of Hand Poses with a Single-Channel Optical Fiber Force Myography Sensor: A Proof-of-Concept Study
Abstract
Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.
Keywords