International Journal of Molecular Sciences (Nov 2017)

Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates

  • R. Sobreiro-Almeida,
  • M. N. Tamaño-Machiavello,
  • E. O. Carvalho,
  • L. Cordón,
  • S. Doria,
  • L. Senent,
  • D. M. Correia,
  • C. Ribeiro,
  • S. Lanceros-Méndez,
  • R. Sabater i Serra,
  • J. L. Gomez Ribelles,
  • A. Sempere

DOI
https://doi.org/10.3390/ijms18112391
Journal volume & issue
Vol. 18, no. 11
p. 2391

Abstract

Read online

The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.

Keywords