Molecules (Nov 2023)

The Green Synthesis of Reduced Graphene Oxide Using Ellagic Acid: Improving the Contrast-Enhancing Effect of Microbubbles in Ultrasound

  • Qiwei Cheng,
  • Yuzhou Wang,
  • Qi Zhou,
  • Shaobo Duan,
  • Beibei Zhang,
  • Yaqiong Li,
  • Lianzhong Zhang

DOI
https://doi.org/10.3390/molecules28227646
Journal volume & issue
Vol. 28, no. 22
p. 7646

Abstract

Read online

There is an urgent need to realize precise clinical ultrasound with ultrasound contrast agents that provide high echo intensity and mechanical index tolerance. Graphene derivatives possess exceptional characteristics, exhibiting great potential in fabricating ideal ultrasound contrast agents. Herein, we reported a facile and green approach to synthesizing reduced graphene oxide with ellagic acid (rGO-EA). To investigate the application of a graphene derivative in ultrasound contrast agents, rGO-EA was dispersed in saline solution and mixed with SonoVue (SV) to fabricate SV@rGO-EA microbubbles. To determine the properties of the product, analyses were performed, including ultraviolet–visible spectroscopy (UV–vis), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectrum (XPS), X-ray diffraction analysis (XRD) and zeta potential analysis. Additionally, cell viability measurements and a hemolysis assay were conducted for a biosafety evaluation. SV@rGO-EA microbubbles were scanned at various mechanical index values to obtain the B-mode and contrast-enhanced ultrasound (CEUS) mode images in vitro. SV@rGO-EA microbubbles were administered to SD rats, and their livers and kidneys were imaged in CEUS and B-mode. The absorption of rGO-EA resulted in an enhanced echo intensity and mechanical index tolerance of SV@rGO-EA, surpassing the performance of SV microbubbles both in vitro and in vivo. This work exhibited the application potential of graphene derivatives in the field of ultrasound precision medicine.

Keywords