PLoS ONE (Jan 2017)

A comparison of Ki-67 counting methods in luminal Breast Cancer: The Average Method vs. the Hot Spot Method.

  • Min Hye Jang,
  • Hyun Jung Kim,
  • Yul Ri Chung,
  • Yangkyu Lee,
  • So Yeon Park

DOI
https://doi.org/10.1371/journal.pone.0172031
Journal volume & issue
Vol. 12, no. 2
p. e0172031

Abstract

Read online

In spite of the usefulness of the Ki-67 labeling index (LI) as a prognostic and predictive marker in breast cancer, its clinical application remains limited due to variability in its measurement and the absence of a standard method of interpretation. This study was designed to compare the two methods of assessing Ki-67 LI: the average method vs. the hot spot method and thus to determine which method is more appropriate in predicting prognosis of luminal/HER2-negative breast cancers. Ki-67 LIs were calculated by direct counting of three representative areas of 493 luminal/HER2-negative breast cancers using the two methods. We calculated the differences in the Ki-67 LIs (ΔKi-67) between the two methods and the ratio of the Ki-67 LIs (H/A ratio) of the two methods. In addition, we compared the performance of the Ki-67 LIs obtained by the two methods as prognostic markers. ΔKi-67 ranged from 0.01% to 33.3% and the H/A ratio ranged from 1.0 to 2.6. Based on the receiver operating characteristic curve method, the predictive powers of the KI-67 LI measured by the two methods were similar (Area under curve: hot spot method, 0.711; average method, 0.700). In multivariate analysis, high Ki-67 LI based on either method was an independent poor prognostic factor, along with high T stage and node metastasis. However, in repeated counts, the hot spot method did not consistently classify tumors into high vs. low Ki-67 LI groups. In conclusion, both the average and hot spot method of evaluating Ki-67 LI have good predictive performances for tumor recurrence in luminal/HER2-negative breast cancers. However, we recommend using the average method for the present because of its greater reproducibility.