International Journal of Molecular Sciences (Apr 2022)

Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy

  • Isabela Simona Caizer,
  • Costica Caizer

DOI
https://doi.org/10.3390/ijms23084350
Journal volume & issue
Vol. 23, no. 8
p. 4350

Abstract

Read online

In this paper, we present a study by computer simulation on superparamagnetic hyperthermia with CoFe2O4 ferrimagnetic nanoparticles coated with biocompatible gamma-cyclodextrins (γ-CDs) to be used in alternative cancer therapy with increased efficacy and non-toxicity. The specific loss power that leads to the heating of nanoparticles in superparamagnetic hyperthermia using CoFe2O4–γ-CDs was analyzed in detail depending on the size of the nanoparticles, the thickness of the γ-CDs layer on the nanoparticle surface, the amplitude and frequency of the alternating magnetic field, and the packing fraction of nanoparticles, in order to find the proper conditions in which the specific loss power is maximal. We found that the maximum specific loss power was determined by the Brown magnetic relaxation processes, and the maximum power obtained was significantly higher than that which would be obtained by the Néel relaxation processes under the same conditions. Moreover, increasing the amplitude of the magnetic field led to a significant decrease in the optimal diameter at which the maximum specific loss power is obtained (e.g., for 500 kHz frequency the optimal diameter decreased from 13.6 nm to 9.8 nm when the field increased from 10 kA/m to 50 kA/m), constituting a major advantage in magnetic hyperthermia for its optimization, in contrast to the known results in the absence of cyclodextrins from the surface of immobilized nanoparticles of CoFe2O4, where the optimal diameter remained practically unchanged at ~6.2 nm.

Keywords