Materials (Oct 2022)

Competitive Formation Zones in Carbon Nanotube Float-Catalysis Synthesis: Growth in Length vs. Growth Suppression

  • Vladimir Z. Mordkovich,
  • Aida R. Karaeva,
  • Nikita V. Kazennov,
  • Eduard B. Mitberg,
  • Mariem Nasraoui,
  • Boris A. Kulnitskiy,
  • Vladimir D. Blank

DOI
https://doi.org/10.3390/ma15207377
Journal volume & issue
Vol. 15, no. 20
p. 7377

Abstract

Read online

Catalytic synthesis of carbon nanotubes (CNT) produces numerous various byproducts such as soot, graphite platelets, catalyst nanoparticles, etc. Identification of the byproduct formation mechanisms would help develop routes to more selective synthesis of better carbon-based materials. This work reports on the identification of the formation zone and conditions for rather unusual closed multishell carbon nanocapsules in a reactor for float-catalysis synthesis of longer CNT. Structural investigation of the formed nanocapsule material along with computational fluid dynamics (CFD) simulations of the reactor suggested a nanocapsule formation mechanism, in which CNT embryos are suppressed in growth by the in-reactor turbulence. By means of TEM and FFT investigation, it is found that differently oriented single crystals of γ–Fe2O3, which do not have clear connections with each other, determine a spherical surface. The carbon atoms that seep through these joints do not form crystalline graphite layers. The resulting additional product in the form of graphene-coated (γ–Fe/Fe3C)/γ–Fe2O3 nanoparticles can be a lightweight and effective microwave absorber.

Keywords