Mathematical Biosciences and Engineering (Apr 2019)

Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy

  • Zhimin Wu ,
  • Tin Phan,
  • Javier Baez,
  • Yang Kuang,
  • Eric J. Kostelich

DOI
https://doi.org/10.3934/mbe.2019176
Journal volume & issue
Vol. 16, no. 5
pp. 3512 – 3536

Abstract

Read online

The past two decades have seen the development of numerous mathematical models to study various aspects of prostate cancer in clinical settings. These models often contain large sets of parameters and rely on limited data sets for validation. The quantitative analysis of the dynamics of prostate cancer under treatment may be hindered by the lack of identifiability of the parameters from the available data, which limits the predictive ability of the model. Using three ordinary differential equation models as case studies, we carry out a numerical investigation of the identifiability and uncertainty quantification of the model parameters. In most cases, the parameters are not identifiable from time series of prostate-specific antigen, which is used as a clinical proxy for tumor progression. It may not be possible to define a finite confidence bound on an unidentifiable parameter, and the relative uncertainties in even identifiable parameters may be large in some cases. The Fisher information matrix may be used to determine identifiable parameter subsets for a given model. The use of biological constraints and additional types of measurements, should they become available, may reduce these uncertainties. Ensemble Kalman filtering may provide clinically useful, short-term predictions of patient outcomes from imperfect models, though care must be taken when estimating ``patient-specific'' parameters. Our results demonstrate the importance of parameter identifiability in the validation and predictive ability of mathematical models of prostate tumor treatment. Observing-system simulation experiments, widely used in meteorology, may prove useful in the development of biomathematical models intended for future clinical application.

Keywords