Remote Sensing (Oct 2023)

Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations

  • Mikhail Pichugin,
  • Irina Gurvich,
  • Anastasiya Baranyuk

DOI
https://doi.org/10.3390/rs15215181
Journal volume & issue
Vol. 15, no. 21
p. 5181

Abstract

Read online

Here, we examine extreme ocean winds associated with intense wintertime extratropical windstorms over the North Pacific. The study was mainly based on NASA Soil Moisture Active Passive (SMAP) L-band radiometer observations allowing the retrieval of ocean wind speeds up to 70 m/s regardless of precipitation intensity. Additionally, we assessed the ability of atmospheric reanalysis ERA5 and the Climate Forecast System Version 2 (CFSv2) to reproduce high-wind features within severe windstorms, particularly those associated with “explosive” cyclogenesis. The analysis identified 145 windstorm events with hurricane-force (HF) wind zones within the SMAP L-band radiometer swath from 2015 to 2023. These windstorms develop most frequently over two areas: southeast of Kamchatka and south of Alaska, spanning 40–47°N latitudes. Both reanalysis datasets significantly underestimated HF wind speeds compared to SMAP measurements, but CFSv2 tends to reproduce more-intense windstorms than ERA5. Among the notable new findings is that the SMAP data revealed two distinct groups in maximum wind speed distribution, indicating the existence of a separate class of severe windstorm events with a distinct mechanism for extreme wind formation related probably to a Shapiro–Keyser cyclogenesis and the presence of sting jet (SJ) feature. The study highlights the potential of SMAP measurements to study wind extremes and underscores the need for improvements in operational predictive models to better reproduce the formation of SJ windstorms.

Keywords