Energies (May 2021)

An Experimental Study on the Energy and Exergy Performance of an Air-Type PVT Collector with Perforated Baffle

  • Jin-Hee Kim,
  • Ji-Suk Yu,
  • Jun-Tae Kim

DOI
https://doi.org/10.3390/en14102919
Journal volume & issue
Vol. 14, no. 10
p. 2919

Abstract

Read online

BIPV (Building Integrated Photovoltaic) system is a building envelope technology that generates energy by converting solar energy into electricity. However, after producing electrical energy, the remaining solar energy is transferred as heat, raising the temperature at the rear of the BIPV module, and reducing electrical efficiency. On the other hand, a PVT (Photovoltaic Thermal) collector is a device that generates electricity from a PV module and at the same time uses the heat transferred to the air layer inside the collector. In general, the performance of air-type PVT collectors is based on energy analysis using the first law of thermodynamics. Since this performance does not take into account the loss amount, it is not the actual amount of power generation and preheat of the collector that can be used. Therefore, an exergy analysis based on the second law of thermodynamics considering the amount of energy loss must be performed. In this paper, an air-type PVT collector to which perforated baffles were applied was tested through outdoor experiments based on ISO 9806 standard. The total energy (thermal and electrical characteristics) and exergy according to the flow rate (100, 150, and 200 m3/h), solar radiation, and rear temperature of the PV module of the air-type PVT collector were analyzed. As a result, the total exergy efficiency of the air-type PVT collector with perforated baffles was 24.8–30.5% when the total energy efficiency was 44.1–63.3%.

Keywords