OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived <i>Streptomyces globisporus</i> SCSIO LCY30
Yanqing Li,
Naying Gong,
Le Zhou,
Zhijie Yang,
Hua Zhang,
Yucheng Gu,
Junying Ma,
Jianhua Ju
Affiliations
Yanqing Li
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Naying Gong
Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
Le Zhou
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Zhijie Yang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Hua Zhang
Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
Yucheng Gu
Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
Junying Ma
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Jianhua Ju
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
The one strain many compounds (OSMAC) strategy is an effective method for activating silent gene clusters by cultivating microorganisms under various conditions. The whole genome sequence of the marine-derived strain Streptomyces globisporus SCSIO LCY30 revealed that it contains 30 biosynthetic gene clusters (BGCs). By using the OSMAC strategy, three types of secondary metabolites were activated and identified, including three angucyclines, mayamycin A (1), mayamycin B (2), and rabolemycin (3); two streptophenazines (streptophenazin O (4) and M (5)); and a macrolide dimeric dinactin (6), respectively. The biosynthetic pathways of the secondary metabolites in these three families were proposed based on the gene function prediction and structural information. The bioactivity assays showed that angucycline compounds 1–3 exhibited potent antitumor activities against 11 human cancer cell lines and antibacterial activities against a series of Gram-positive bacteria. Mayamycin (1) selectively exhibited potent cytotoxicity activity against triple-negative breast cancer (TNBC) cell lines such as MDA-MB-231, MDA-MB-468, and Bt-549, with IC50 values of 0.60–2.22 μM.