Materials for Renewable and Sustainable Energy (Nov 2024)

Novel hole transport materials of pyrogallol-sulfonamide hybrid: synthesis, optical, electrochemical properties and molecular modelling for perovskite solar cells

  • A. Naguib,
  • Ahmed Mourtada Elseman,
  • E. A. Ishak,
  • M. S. A. El-Gaby

DOI
https://doi.org/10.1007/s40243-024-00275-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Sulfonamide derivatives as semiconductor materials for organic optoelectronic devices, including photovoltaic (PV), have received considerable interest. In the present work, the synthesis of novel pyrogallol-sulfonamide derivatives based on a molecular hybridization approach yielded N-((4-((2,3,4-trihydroxyphenyl)diazenyl)phenyl)sulfonyl)acetamide (N-DPSA). The techniques of spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), and mass spectrum were utilized to identify the structural composition of the synthesized N-DPSA. The new N-DPSA was investigated by Hall-effect measurement to prove the positive charge carrier (hole mobility) with mobility and conductivity of 2.39 × 103 cm2/Vs and 1.76 × 10–1 1/Ω cm, respectively. Consequently, N-DPSA could be proposed as a strong candidate as a p-type semiconductor (hole transport layer (HTL)). The optical energy gap was computed at 2.03 eV, indicating the direct optical transition nature of N-DPSA. The elaborated molecular semiconductor's thermal features, molecular modelling, and electronic energy levels were also investigated. The new N-DPSA at various concentrations provided easy synthesis, cheap cost, high performance, and a straightforward design approach for a possible HTL in effective perovskite solar cells (PSCs). A PCE of 7.3% is shown for the N-DPSA-based PSC at its optimal concentration.

Keywords