Pharmaceutics (Jul 2023)

Sustained Inhibition of VEGF and TNF-α Achieves Multi-Ocular Protection and Prevents Formation of Blood Vessels after Severe Ocular Trauma

  • Chengxin Zhou,
  • Fengyang Lei,
  • Jyoti Sharma,
  • Pui-Chuen Hui,
  • Natalie Wolkow,
  • Claes H. Dohlman,
  • Demetrios G. Vavvas,
  • James Chodosh,
  • Eleftherios I. Paschalis

DOI
https://doi.org/10.3390/pharmaceutics15082059
Journal volume & issue
Vol. 15, no. 8
p. 2059

Abstract

Read online

Purpose: This study aimed to develop a clinically feasible and practical therapy for multi-ocular protection following ocular injury by using a thermosensitive drug delivery system (DDS) for sustained delivery of TNF-α and VEGF inhibitors to the eye. Methods: A thermosensitive, biodegradable hydrogel DDS (PLGA-PEG-PLGA triblock polymer) loaded with 0.7 mg of adalimumab and 1.4 mg of aflibercept was injected subconjunctivally into Dutch-belted pigmented rabbits after corneal alkali injury. Control rabbits received 2 mg of IgG-loaded DDS or 1.4 mg of aflibercept-loaded DDS. Animals were followed for 3 months and assessed for tolerability and prevention of corneal neovascularization (NV), improvement of corneal re-epithelialization, inhibition of retinal ganglion cell (RGC) and optic nerve axon loss, and inhibition of immune cell infiltration into the cornea. Drug-release kinetics was assessed in vivo using an aqueous humor protein analysis. Results: A single subconjunctival administration of dual anti-TNF-α/anti-VEGF DDS achieved a sustained 3-month delivery of antibodies to the anterior chamber, iris, ciliary body, and retina. Administration after corneal alkali burn suppressed CD45+ immune cell infiltration into the cornea, completely inhibited cornea NV for 3 months, accelerated corneal re-epithelialization and wound healing, and prevented RGC and optic nerve axon loss at 3 months. In contrast, anti-VEGF alone or IgG DDS treatment led to persistent corneal epithelial defect (combined: + immune cells into the cornea (combined: 28 ± 20; anti-VEGF: 730 ± 178; anti-IgG: 360 ± 186, cells/section), and significant loss of RGCs (combined: 2.7%; anti-VEGF: 63%; IgG: 45%) and optic nerve axons at 3 months. The aqueous humor protein analysis showed first-order release kinetics without adverse effects at the injection site. Conclusions: Concomitant inhibition of TNF-α and VEGF prevents corneal neovascularization and ameliorates subsequent irreversible damage to the retina and optic nerve after severe ocular injury. A single subconjunctival administration of this therapy, using a biodegradable, slow-release thermosensitive DDS, achieved the sustained elution of therapeutic levels of antibodies to all ocular tissues for 3 months. This therapeutic approach has the potential to dramatically improve the outcomes of severe ocular injuries in patients and improve the therapeutic outcomes in patients with retinal vascular diseases.

Keywords