Diagnostics (Jun 2016)

Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]2) in Induced Myocardial Infarction in Minipigs

  • Thomas Rasmussen,
  • Bjarke Follin,
  • Jens Kastrup,
  • Malene Brandt-Larsen,
  • Jacob Madsen,
  • Thomas Emil Christensen,
  • Karsten Pharao Hammelev,
  • Philip Hasbak,
  • Andreas Kjær

DOI
https://doi.org/10.3390/diagnostics6020026
Journal volume & issue
Vol. 6, no. 2
p. 26

Abstract

Read online

Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.

Keywords